Struktur File Sesudah di refactor

Struktur File Sebelum Refactor

PERUBAHAN PALING BESAR SETELAH RESTRUKTUR (DENGAN BASE CLASS)
1. Aplikasi kini mempunyai “aturan inti” yang mengikat semua modul
Kami menambahkan empat Base Class di folder core/:
e BaseController
e BaseView
e BaseService
e BaseModel
Keempatnya berfungsi sebagai:

Fondasi utama
yang mengatur bagaimana setiap file di seluruh modul harus bekerja.

Ini membuat semua modul sekarang konsisten, rapi, dan ikut aturan arsitektur yang sama.

2. Semua modul sekarang diwariskan dari Base Class
Contoh:
class TransaksiController(BaseController):
def __init_ (self):
super().__init_ ()
Dampaknya:
e Tidak ada controller liar yang berbeda dari modul lain
e Semua modul berjalan dengan format dan aturan yang sama
e Perubahan aturan di BaseClass langsung turun ke semua modul
Contoh benefit:

Jika nanti Anda ingin menambahkan debug logging ke semua controller,
cukup modifikasi 1 file: BaseController.
Semua modul otomatis ikut upgrade.

3. Pemisahan Tugas Menjadi Sangat Jelas

Dengan base class:

Layer Tugas Tidak Boleh
View Ul & event Memanggil API
Controller Mengatur alur Simpan IP / logika API

Service Logika bisnis + APl Sentuh Ul

Model Struktur data Akses server
Ini membuat aplikasi:

e jauh lebih stabil

e mudah diperbaiki

e tidak mudah kacau

e cocok untuk tim besar

4. CORE sekarang menjadi pusat kekuatan aplikasi
Folder core/ berisi:
e konfigurasi global

e Base Classes

e http client
e logger
e db helper

e device utils
Sehingga:

kalau IP server berubah,
cukup ubah satu file — seluruh aplikasi ikut menyesuaikan.

Tidak ada lagi:
e |P tertanam di controller

e URL tercecer di 20 file berbeda

5. Modul benar-benar bersih & mandiri
Contoh modul penjualan/:

controllers/

models/

services/

views/

widgets/

Dengan BaseClass:

Semua modul selalu memiliki controller, service, model, dan view yang selaras dan koheren.

3. PERBEDAAN SEBELUM vs SESUDAH

Aspek Sebelum Sesudah

Struktur Campur, tidak teratur Modular per fitur

Konsistensi Berbeda-beda Seragam karena BaseClass
IP Server Hardcoded di banyak file Centralized di core/config_utils
Controller Berantakan Terkontrol via BaseController
Service Tidak terstandarisasi Semua ikut BaseService
Model Bebas bentuk Tertata via BaseModel

View Bercampur logika Bersih — event saja
Skalabilitas Rendah Sangat tinggi

Kemudahan Dev Sulit Mudah & cepat
Maintainability Tinggi resiko error Sangat aman

Clean Code Tidak terjamin Dijamin oleh BaseClass

Sebelum dilakukan restruktur, aplikasi tidak memiliki standar umum. Setiap file berdiri sendiri dan sulit
diprediksi.

Setelah restruktur, kami menambahkan empat Base Class utama di dalam folder Core.

BaseClass ini menjadi landasan arsitektur, sehingga seluruh controller, view, service, dan model di setiap
modul wajib mengikuti aturan yang sama. Dengan cara ini, semua modul menjadi konsisten, modular,
mudah dipelihara, dan sangat scalable.

Jika aturan di BaseClass diperbarui, seluruh modul aplikasi akan otomatis ikut meningkat kualitasnya.

Struktur Lama

~ Views

» _pycache__
barang_viev
config_dialog.py
customer_search_view.py
customer_setup_view.py
dashboard_info_view.py
dashboard_window.py
device_registration_dialog_asli.py

device_registration_dialog.py

load_transaksi_view.py
login_window_mod_ok.py
login_window_nice.py
login_window_ori.py
login_window_rusak.py
login_window.py
master_password_dialog.py
pembatalan_view.py
pembayaran_view.py
print_view.py
printer_setting_view_.py
printer_settings
printer_status_circle.py
retum_view.py
settlement_dialog_view.py
sinkron_data_vi
sinkron_penjualan_vi
sinkron_view.py

status_circle_widget.py

transaksi_penjualan_view.py

Sruktur lama:

- Semua controller disimpan dalam satu folder di bagian paling atas (root folder).

Controller itu ibarat “otak kecil” yang mengatur alur program. Namun karena semuanya ditumpuk jadi
satu, setiap fungsi bercampur dan sulit mencari mana yang mengatur fitur tertentu.

- Semua model juga disimpan dalam satu folder di root.
Model adalah bagian yang mengatur data. Semuanya ada di satu keranjang yang sama, sehingga
semakin banyak fitur semakin sulit menemukan file yang tepat.

- Semua view disimpan dalam satu folder di root.
View adalah tampilan antarmuka. Karena disatukan tanpa pemisahan fitur, tampilan untuk halaman yang
berbeda jadi bercampur dan membingungkan saat harus mencari atau memperbaikinya.

Struktur Baru

L

>
>
>
>
>
>
>

modules ~ penjualan

__pycache__ ~ controllers

auth » _ pycache

customer _imit__py

dashboard barang_controller.py
penjualan diskon_controller.py

printer history_transaksi_controller.py
sinkronisasi load_transaksi_controller.py

_init__py pembayaran_controller.py

» themes return_controller.py

> PYpOs
» _ pycache
> assets
~ core
> _ pycache__

~ utils

>

_init__py
base_controller.py

base_model.py

init__py settlement_controller.py

app-py transaksi_penjualan_controller.py

main.py ~ models

» _pycache__
_imit__py
barang_model.py
detail_transaksi_model.py
diskon_model.py
load_transaksi_model.py
pembayaran_model.py

return_model.py
_ pycache

_init__py
audit_logger.py

settlement_model.py
transaksi_model.py
» services

cabang_utils.py s

config_utils.py > _pycache__
_imit__py

barang_view.py

db_helper.py
device_utils.py

dialog_size_helper.py e

myhelper.py indexpy

path_utils.py load_transaksi_view.py

print_return_voucher.py pembatalan view.py

settlement_checker.py pembayaran,_ view.py
returm_view.py
settlement_dialog_view.py

transaksi_penjualan_view.py

base_service.py

base_view.py

Contoh pemindahan yang seharusnya berada di models

controllers > transaksi_penjualan_controllerpy > %g TransaksiPenjualanController > (1) cek kuota free_produk

1349 % cek_kuota free produk(

Mengecek kuota free produk ke server, dipanggil saat user input barang.

url = "https://beta.mayagrahakencana.com/main_sb/eusvc/proDiskon/checkFreeProdukQuota

data

‘produk_id': barang["id"],

‘produk_nama’: barang["nama”],

‘free_produk_id': barang["free produk_id"],
‘free_produk_nama®: barang["free_produk_nama"],

‘free_qty': barang["jumlah_free"],

‘kelipatan’: barang. ("kelipatan”, 1),

‘guota global': barang. ("guota global”™, @),

‘guota_used’: barang. "quota_used”, @),

‘date’: datetime.datetime. {)- "R - 3m - BH: XM %S,
"settlement’: 1,

“transaksi_id': "",

“transaksi_no': "",

"toko_id': 1€e1,

‘oleh_id': 999,

‘oleh_nama': "kasir”,
‘customer_id': 1,
‘customer_nama’: "Tunai®

~
response = requests. {
response. ()
result = response. ()
result
requests.exceptions. Timeout:
error_msg = "Request timeout (»18s) - server tidak merespons”
("X { 1)
{"status": @, "reason”: "timeout"}
requests.exceptions.ConnectionError:
error_msg = "Connection error - tidak dapat terhubung ke server”
("X { 1)
{"status”: @, "reason”: "connection_error"”
requests.exceptions.HTTPError e:
error_msg "HTTP error {e.response.status codel”
(F" X { 1)
{"status”: @, "reason”: f"http_error_{e.response.status_code}"}
requests.exceptions.RequestException =3
(f" X Error cek kuota free produk: {e}")
= " " oo 1

#Ini adalah sebelum refactor

1. APA YANG DILAKUKAN KODE ANDA?
Kode tersebut:
e memanggil server / APl endpoint
e mengirim request POST
e melakukan timeout + error handling

e mengembalikan JSON dari server
Artinya:
Kode ini adalah komunikasi jaringan + business logic.
Dan dalam arsitektur PyPOS (Model-View—Service—-Manager), aturan utamanya adalah:

API | network call — 100% harus masuk ke SERVICE

#ini setelah refactor

pypos > modules > penjualan » controllers > transaksi_penjualan_controller.py > %g TransaksiPenjualanController > () find_barang_row_by_id
(BaseController):
cek_kuota free_ produk(B):
pypos.modules.penjualan. services.transaksi service TransaksiService
TransaksiService. ()

*dibawabh ini file di models
pypos > modules > penjualan > services > transaksi_service.py > ..

cek_kuota_free_produk(B »)
Mengecek KUOTa Tree produk ke server, daipangglil Saal User 1nput Darang.

pypos.core.utils.config utils load_config
config)
base url = config. ("api_base url”, "https://beta.mayagrahakencana.com/main_sb"). (/™)
path = config. ("ep_diskon_check_free_produk™, "/eusvc/proDiskon/checkFreeProdukQuota™)
url "{base_url}{path}”
data = {

"produk_id": barang. ("id"),

"produk_nama™: barang. ("nama"),

"free_produk_id": barang. ("free_produk_id"),

"free_produk_nama”: barang. "free_produk_nama™)

"free_qty": barang. ("jumlah_free™),

"kelipatan™: barang. ("kelipatan™, 1),

"quota_global”: barang. ("quota_global™, @),

"quota_used”: barang. "quota_used”, 8),

"date”: datetime.datetime. ()- 7Y - %m-

"settlement™: 1,

"transaksi_id":)

"transaksi no": ’
"toko_id": 1861,
"oleh_id": 999,
"oleh_nama™: "kasir”,
"customer_id": 1,
"customer_nama”: "Tunai”,

user_info:
data["oleh_id"] = user_info. ("id" ["oleh_id"]}
data["oleh_nama”] user_info. ("nama" ["oleh_nama™])

response = requests. (18)
response. ()
response. ()
requests.exceptions. Timeout:
error_msg = "Request timeout (>1@s) - server tidak merespons”
(f"[ERROR] { 1)
{"status™: @, "reason”: "timeout™}
requests.exceptions.ConnectionError:
error_msg = "Connection error - tidak dapat terhubung ke server”
(f"[ERROR] { 1)
{"status™: @, "reason”: "connection_error”
requests.exceptions.HTTPError [-H
Error_msg "HTTP error {e.response.status_codel”
(f"[ERROR] { 1)
{"status”: @, "reason": f"http_error_{e.response.status_code}"}

*Controller (di Python menyebutnya manager/coordinator)
Controller hanya boleh:

e menerima event dari View

e memanggil Service

¢ mengirim hasil ke View
Controller TIDAK BOLEH:

¢ memanggil URL

e memanggil server

e mengurus timeout

e mengatur error handling request

e melakukan business logic berat

Tempat yang BENAR: SERVICE LAYER
Service adalah:
e jembatan antara Controller < API
e tempat menyimpan semua logic transaksi
¢ tempat memanggil API

e tempat error handling

