
 Struktur File Sesudah di refactor

Struktur File Sebelum Refactor

PERUBAHAN PALING BESAR SETELAH RESTRUKTUR (DENGAN BASE CLASS)

1. Aplikasi kini mempunyai “aturan inti” yang mengikat semua modul

Kami menambahkan empat Base Class di folder core/:

• BaseController

• BaseView

• BaseService

• BaseModel

Keempatnya berfungsi sebagai:

Fondasi utama

yang mengatur bagaimana setiap file di seluruh modul harus bekerja.

Ini membuat semua modul sekarang konsisten, rapi, dan ikut aturan arsitektur yang sama.

2. Semua modul sekarang diwariskan dari Base Class

Contoh:

class TransaksiController(BaseController):

 def __init__(self):

 super().__init__()

Dampaknya:

• Tidak ada controller liar yang berbeda dari modul lain

• Semua modul berjalan dengan format dan aturan yang sama

• Perubahan aturan di BaseClass langsung turun ke semua modul

Contoh benefit:

Jika nanti Anda ingin menambahkan debug logging ke semua controller,

cukup modifikasi 1 file: BaseController.

Semua modul otomatis ikut upgrade.

3. Pemisahan Tugas Menjadi Sangat Jelas

Dengan base class:

Layer Tugas Tidak Boleh

View UI & event Memanggil API

Controller Mengatur alur Simpan IP / logika API

Service Logika bisnis + API Sentuh UI

Model Struktur data Akses server

Ini membuat aplikasi:

• jauh lebih stabil

• mudah diperbaiki

• tidak mudah kacau

• cocok untuk tim besar

4. CORE sekarang menjadi pusat kekuatan aplikasi

Folder core/ berisi:

• konfigurasi global

• Base Classes

• http client

• logger

• db helper

• device utils

Sehingga:

kalau IP server berubah,

cukup ubah satu file → seluruh aplikasi ikut menyesuaikan.

Tidak ada lagi:

• IP tertanam di controller

• URL tercecer di 20 file berbeda

5. Modul benar-benar bersih & mandiri

Contoh modul penjualan/:

controllers/

models/

services/

views/

widgets/

Dengan BaseClass:

Semua modul selalu memiliki controller, service, model, dan view yang selaras dan koheren.

3. PERBEDAAN SEBELUM vs SESUDAH

Aspek Sebelum Sesudah

Struktur Campur, tidak teratur Modular per fitur

Konsistensi Berbeda-beda Seragam karena BaseClass

IP Server Hardcoded di banyak file Centralized di core/config_utils

Controller Berantakan Terkontrol via BaseController

Service Tidak terstandarisasi Semua ikut BaseService

Model Bebas bentuk Tertata via BaseModel

View Bercampur logika Bersih → event saja

Skalabilitas Rendah Sangat tinggi

Kemudahan Dev Sulit Mudah & cepat

Maintainability Tinggi resiko error Sangat aman

Clean Code Tidak terjamin Dijamin oleh BaseClass

Sebelum dilakukan restruktur, aplikasi tidak memiliki standar umum. Setiap file berdiri sendiri dan sulit

diprediksi.

Setelah restruktur, kami menambahkan empat Base Class utama di dalam folder Core.

BaseClass ini menjadi landasan arsitektur, sehingga seluruh controller, view, service, dan model di setiap

modul wajib mengikuti aturan yang sama. Dengan cara ini, semua modul menjadi konsisten, modular,

mudah dipelihara, dan sangat scalable.

Jika aturan di BaseClass diperbarui, seluruh modul aplikasi akan otomatis ikut meningkat kualitasnya.

Struktur Lama

Sruktur lama:

- Semua controller disimpan dalam satu folder di bagian paling atas (root folder).

Controller itu ibarat “otak kecil” yang mengatur alur program. Namun karena semuanya ditumpuk jadi

satu, setiap fungsi bercampur dan sulit mencari mana yang mengatur fitur tertentu.

- Semua model juga disimpan dalam satu folder di root.

Model adalah bagian yang mengatur data. Semuanya ada di satu keranjang yang sama, sehingga

semakin banyak fitur semakin sulit menemukan file yang tepat.

- Semua view disimpan dalam satu folder di root.

View adalah tampilan antarmuka. Karena disatukan tanpa pemisahan fitur, tampilan untuk halaman yang

berbeda jadi bercampur dan membingungkan saat harus mencari atau memperbaikinya.

Struktur Baru

Contoh pemindahan yang seharusnya berada di models

#Ini adalah sebelum refactor

1. APA YANG DILAKUKAN KODE ANDA?

Kode tersebut:

• memanggil server / API endpoint

• mengirim request POST

• melakukan timeout + error handling

• mengembalikan JSON dari server

Artinya:

Kode ini adalah komunikasi jaringan + business logic.

Dan dalam arsitektur PyPOS (Model–View–Service–Manager), aturan utamanya adalah:

API / network call → 100% harus masuk ke SERVICE

#ini setelah refactor

*dibawah ini file di models

*Controller (di Python menyebutnya manager/coordinator)

Controller hanya boleh:

• menerima event dari View

• memanggil Service

• mengirim hasil ke View

Controller TIDAK BOLEH:

• memanggil URL

• memanggil server

• mengurus timeout

• mengatur error handling request

• melakukan business logic berat

Tempat yang BENAR: SERVICE LAYER

Service adalah:

• jembatan antara Controller ↔ API

• tempat menyimpan semua logic transaksi

• tempat memanggil API

• tempat error handling

